

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/clayer/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/clayer/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

 Documentation is in javadoc format and in the logging code (see e.g. logger.h, logconfig.h). It’s also viewable on the gh-pages branch and in the wiki.

clayer

Logging and analysis facility in C++ using compile time template meta programming.
Library design report, tutorial and documentation can be found in Project Wiki [https://github.com/yogeshg/clayer/wiki/].

Aim

	Logging Library - full flexibility of logging including levels, formats, logging to different streams

	Analysis of Logs - millions of log records get created every day, not only should a good library create them
it should also be able to analyze them

	Performance
	Make compile decisions and compile time

	zero overhead for level not in use

	Intuition
	Easy syntax for setting up logs

	Intuitive syntax for actual logging, users should be able to migrate from std::cerr using simple find and replace

Scope of Project

Version 0.8

Version 1.0

Version 1.2

HTTP Server Tester

Environment Setup

	Install Boost Library and set the environment variable BOOST_ROOT to be the top level directory of the library.

	Create a new directory build inside clayer/test/server and run cmake ..

	Run make

	The server is already loaded with clayer logging library. Run ./http_examples to start an HTTP server on 127.0.0.1:8080

	Random test - simulating user behavior on the server. Run ./logtest.sh inside clayer/server/tests

	Stress test - TODO

Links

	Proposal [https://docs.google.com/document/d/1WWg79GEwaBX3Nd1sq–ZGRc9JdGWx78QBPt322kT4vc/edit#heading=h.a7w2y67mfsq4] contains

	We will follow this Project Structure [http://hiltmon.com/blog/2013/07/03/a-simple-c-plus-plus-project-structure/]

Talk with Jonathan

	We should look to add colors
	it can help us add more template tricks

	also use concepts like printable

	enable functions (?)

	use std::integer_sequence - compile time

	Good idea to look through http://boost-spirit.com/home/

Concurrency

	We need to allow different threads to be able to log to the log file

	One solution for this is to make the log record atomic

	only 1 thread can make a log at a given time.

thread1:
LOG() << "This is some log. Value: " << value;

thread2:
LOG() << "This is a different log. Value: " << value;

// expected log:
// runner.cpp : line 101 (thread1) : This is some log. Value: 1001
// runner.cpp : line 201 (thread2) : This is a different log. Value: 2001

	if we do not introduce any atomic actions, then both the threads can
attempt to write to the same underlying stream object and this can cause
errors

	if we make every stream operation atomic we have 4 operations in
the above sample:

thread 1:
{
auto u1 = LOG() << "This is some log. Value: ";
u1 << value;
}
thread 2:
{
auto u2 = LOG() << "This is a different log. Value: ";
u2 << value;
}

	This could potentially lead to a log like:

// runner.cpp : line 101 (thread1) : This is some log. Value: runner.cpp : line 201 (thread2) : This is a different log. Value: 1001
// 2001

	Therefore a thread needs to hold a lock for the duration it is working a log record.

	This version 1.0

	This is not ideal since threads will have to wait for other threads for logging a message

	Ideally we would want the log operation to be non blocking.

	Solution: Every thread can create a log record simultaneously and a LogRecord is pushed to
a thread safe queue by multiple producers. These records are then consumed by a single
thread to write to a LogFile.

	This is our version 1.2

	An ideal solution for this problem would be that each producer writes to a local queue
and a consumer checks each of these queues and writes the minimum timestamp log record to
a file in each iteration.

	This solution is beyond the scope of the project.

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/comment-bright.png

_static/comment-close.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

